Initial Coefficient Bounds for a General Class of Bi-Univalent Functions

H. Orhan ${ }^{\text {a }}$, N. Magesh ${ }^{\text {b }}$, V. K. Balaji ${ }^{\text {c }}$
${ }^{a}$ Department of Mathematics, Faculty of Science, Ataturk University, 25240 Erzurum, Turkey
${ }^{b}$ Post-Graduate and Research Department of Mathematics, Government Arts College for Men, Krishnagiri 635001, Tamilnadu, India ${ }^{c}$ Department of Mathematics, L.N. Govt College, Ponneri, Chennai, Tamilnadu, India

Abstract

Recently, Srivastava et al. [22] reviewed the study of coefficient problems for bi-univalent functions. Inspired by the pioneering work of Srivastava et al. [22], there has been triggering interest to study the coefficient problems for the different subclasses of bi-univalent functions (see, for example, $[1,3,6,7,27,29]$,). Motivated essentially by the aforementioned works, in this paper we propose to investigate the coefficient estimates for a general class of analytic and bi-univalent functions. Also, we obtain estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in this new class. Further, we discuss some interesting remarks, corollaries and applications of the results presented here.

1. Introduction

Let \mathcal{A} denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

which are analytic in the open unit disk $\mathbb{U}=\{z: z \in \mathbb{C}$ and $|z|<1\}$. Further, by \mathcal{S} we shall denote the class of all functions in \mathcal{A} which are univalent in \mathbb{U}.

For analytic functions f and g in \mathbb{U}, f is said to be subordinate to g if there exists an analytic function w such that (see, for example, [13])

$$
w(0)=0, \quad|w(z)|<1 \quad \text { and } \quad f(z)=g(w(z)) \quad(z \in \mathbb{U})
$$

This subordination will be denoted here by

$$
f<g \quad(z \in \mathbb{U})
$$

or, conventionally, by

$$
f(z)<g(z) \quad(z \in \mathbb{U})
$$

[^0]In particular, when g is univalent in \mathbb{U},

$$
f<g \quad(z \in \mathbb{U}) \Leftrightarrow f(0)=g(0) \quad \text { and } \quad f(\mathbb{U}) \subset g(\mathbb{U}) .
$$

Some of the important and well-investigated subclasses of the univalent function class \mathcal{S} include (for example) the class $\mathcal{S}^{*}(\alpha)$ of starlike functions of order $\alpha(0 \leqq \alpha<1)$ in \mathbb{U} and the class $\mathcal{K}(\alpha)$ of convex functions of order $\alpha(0 \leqq \alpha<1)$ in \mathbb{U}, the class $\mathcal{S}_{\mathcal{P}}^{\beta}(\alpha)$ of β-spirallike functions of order $\alpha\left(0 \leqq \alpha<1 ;|\beta|<\frac{\pi}{2}\right)$, the class $\mathcal{S}^{*}(\varphi)$ of Ma-Minda starlike functions and the class $\mathcal{K}(\varphi)$ of Ma-Minda convex functions (φ is an analytic function with positive real part in $\mathbb{U}, \varphi(0)=1, \varphi^{\prime}(0)>0$ and φ maps \mathbb{U} onto a region starlike with respect to 1 and symmetric with respect to the real axis) (see $[5,11,24]$). The above-defined function classes have recently been investigated rather extensively in (for example) $[9,17,25,26]$ and the references therein.

It is well known that every function $f \in \mathcal{S}$ has an inverse f^{-1}, defined by

$$
f^{-1}(f(z))=z \quad(z \in \mathbb{U})
$$

and

$$
f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f) ; r_{0}(f) \geqq \frac{1}{4}\right)
$$

where

$$
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\ldots
$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{U} if both $f(z)$ and $f^{-1}(z)$ are univalent in \mathbb{U}. Let Σ denote the class of bi-univalent functions in \mathbb{U} given by (1). For a brief history and interesting examples of functions which are in (or which are not in) the class Σ, together with various other properties of the bi-univalent function class Σ one can refer the work of Srivastava et al. [22] and references therein. In fact, the study of the coefficient problems involving bi-univalent functions was reviewed recently by Srivastava et al. [22]. Various subclasses of the bi-univalent function class Σ were introduced and non-sharp estimates on the first two coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ in the Taylor-Maclaurin series expansion (1) were found in several recent investigations (see, for example, $[1-4,6-8,12,14,16,19-21,23,27,29]$). The aforecited all these papers on the subject were actually motivated by the pioneering work of Srivastava et al. [22]. However, the problem to find the coefficient bounds on $\left|a_{n}\right|(n=3,4, \ldots)$ for functions $f \in \Sigma$ is still an open problem.

Motivated by the aforementioned works (especially [22] and [3,7]), we define the following subclass of the function class Σ.

Definition 1.1. Let $h: \mathbb{U} \rightarrow \mathbb{C}$, be a convex univalent function such that

$$
h(0)=1 \quad \text { and } \quad h(\bar{z})=\overline{h(z)} \quad(z \in \mathbb{U} \text { and } \mathfrak{R}(h(z))>0) .
$$

Suppose also that the function $h(z)$ is given by

$$
h(z)=1+\sum_{n=1}^{\infty} B_{n} z^{n} \quad(z \in \mathbb{U})
$$

A function $f(z)$ given by (1) is said to be in the class $\mathcal{N} \mathcal{P}_{\Sigma}^{\mu, \lambda}(\beta, h)$ if the following conditions are satisfied:

$$
\begin{equation*}
f \in \Sigma, e^{i \beta}\left((1-\lambda)\left(\frac{f(z)}{z}\right)^{\mu}+\lambda f^{\prime}(z)\left(\frac{f(z)}{z}\right)^{\mu-1}\right)<h(z) \cos \beta+i \sin \beta \quad(z \in \mathbb{U}) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
e^{i \beta}\left((1-\lambda)\left(\frac{g(w)}{w}\right)^{\mu}+\lambda g^{\prime}(w)\left(\frac{g(w)}{w}\right)^{\mu-1}\right)<h(w) \cos \beta+i \sin \beta \quad(w \in \mathbb{U}) \tag{3}
\end{equation*}
$$

where $\beta \in(-\pi / 2, \pi / 2), \lambda \geqq 1, \mu \geqq 0$ and the function g is given by

$$
\begin{equation*}
g(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\ldots \tag{4}
\end{equation*}
$$

the extension of f^{-1} to \mathbb{U}.
Remark 1.2. If we set $h(z)=\frac{1+A z}{1+B z},-1 \leqq B<A \leqq 1$, in the class $\mathcal{N} \mathcal{P}_{\Sigma}^{\mu, \lambda}(\beta, h)$, we have $\mathcal{N} \mathcal{P}_{\Sigma}^{\mu, \lambda}\left(\beta, \frac{1+A z}{1+B z}\right)$ and defined as

$$
f \in \Sigma, e^{i \beta}\left((1-\lambda)\left(\frac{f(z)}{z}\right)^{\mu}+\lambda f^{\prime}(z)\left(\frac{f(z)}{z}\right)^{\mu-1}\right)<\frac{1+A z}{1+B z} \cos \beta+i \sin \beta \quad(z \in \mathbb{U})
$$

and

$$
e^{i \beta}\left((1-\lambda)\left(\frac{g(w)}{w}\right)^{\mu}+\lambda g^{\prime}(w)\left(\frac{g(w)}{w}\right)^{\mu-1}\right)<\frac{1+A w}{1+B w} \cos \beta+i \sin \beta \quad(w \in \mathbb{U})
$$

where $\beta \in(-\pi / 2, \pi / 2), \lambda \geqq 1, \mu \geqq 0$ and the function g is given by (4).
Remark 1.3. Taking $h(z)=\frac{1+(1-2 \alpha) z}{1-z}, 0 \leqq \alpha<1$ in the class $\mathcal{N} \mathcal{P}_{\Sigma}^{\mu, \lambda}(\beta, h)$, we have $\mathcal{N} \mathcal{P}_{\Sigma}^{\mu, \lambda}(\beta, \alpha)$ and $f \in \mathcal{N} \mathcal{P}_{\Sigma}^{\mu, \lambda}(\beta, \alpha)$ if the following conditions are satisfied:

$$
f \in \Sigma, \mathfrak{R}\left(e^{i \beta}\left((1-\lambda)\left(\frac{f(z)}{z}\right)^{\mu}+\lambda f^{\prime}(z)\left(\frac{f(z)}{z}\right)^{\mu-1}\right)\right)>\alpha \cos \beta \quad(z \in \mathbb{U})
$$

and

$$
\mathfrak{R}\left(e^{i \beta}\left((1-\lambda)\left(\frac{g(w)}{w}\right)^{\mu}+\lambda g^{\prime}(w)\left(\frac{g(w)}{w}\right)^{\mu-1}\right)\right)>\alpha \cos \beta \quad(w \in \mathbb{U})
$$

where $\beta \in(-\pi / 2, \pi / 2), 0 \leqq \alpha<1, \lambda \geqq 1, \mu \geqq 0$ and the function g is given by (4). It is interest to note that the class $\mathcal{N} \mathcal{P}_{\Sigma}^{\mu, \lambda}(0, \alpha):=\mathcal{N}_{\Sigma}^{\mu, \lambda}(\alpha)$ the class was introduced and studied by Çağlar et al. [3].

Remark 1.4. Taking $\lambda=1$ and $h(z)=\frac{1+(1-2 \alpha) z}{1-z}, 0 \leqq \alpha<1$ in the class $\mathcal{N} \mathcal{P}_{\Sigma}^{\mu, \lambda}(\beta, h)$, we have $\mathcal{N} \mathcal{P}_{\Sigma}^{\mu, 1}(\beta, \alpha)$ and $f \in \mathcal{N} \mathcal{P}_{\Sigma}^{\mu, 1}(\beta, \alpha)$ if the following conditions are satisfied:

$$
f \in \Sigma, \mathfrak{R}\left(e^{i \beta} f^{\prime}(z)\left(\frac{f(z)}{z}\right)^{\mu-1}\right)>\alpha \cos \beta \quad(z \in \mathbb{U})
$$

and

$$
\mathfrak{R}\left(e^{i \beta} g^{\prime}(w)\left(\frac{g(w)}{w}\right)^{\mu-1}\right)>\alpha \cos \beta \quad(w \in \mathbb{U})
$$

where $\beta \in(-\pi / 2, \pi / 2), 0 \leqq \alpha<1, \mu \geqq 0$ and the function g is given by (4). We notice that the class $\mathcal{N} \mathcal{P}_{\Sigma}^{\mu, 1}(0, \alpha):=$ $\mathcal{F}_{\Sigma}(\mu, \alpha)$ was introduced by Prema and Keerthi [16].

Remark 1.5. Taking $\mu+1=\lambda=1$ and $h(z)=\frac{1+(1-2 \alpha) z}{1-z}, 0 \leqq \alpha<1$ in the class $\mathcal{N} \mathcal{P}_{\Sigma}^{\mu, \lambda}(\beta, h)$, we have $\mathcal{N} \mathcal{P}_{\Sigma}^{0,1}(\beta, \alpha)$ and $f \in \mathcal{N} \mathcal{P}_{\Sigma}^{0,1}(\beta, \alpha)$ if the following conditions are satisfied:

$$
f \in \Sigma, \mathfrak{R}\left(e^{i \beta} \frac{z f^{\prime}(z)}{f(z)}\right)>\alpha \cos \beta \quad(z \in \mathbb{U})
$$

and

$$
\mathfrak{R}\left(e^{i \beta} \frac{w g^{\prime}(w)}{g(w)}\right)>\alpha \cos \beta \quad(w \in \mathbb{U})
$$

where $\beta \in(-\pi / 2, \pi / 2), 0 \leqq \alpha<1$ and the function g is given by (4). In addition, the class $\mathcal{N} \mathcal{P}_{\Sigma}^{0,1}(0, \alpha):=\mathcal{S}_{\Sigma}^{*}(\alpha)$ was studied by Li and Wang [10] and considered by others.

Remark 1.6. Taking $\mu=1$ and $h(z)=\frac{1+(1-2 \alpha) z}{1-z}, 0 \leqq \alpha<1$ in the class $\mathcal{N} \mathcal{P}_{\Sigma}^{\mu, \lambda}(\beta, h)$, we have $\mathcal{N} \mathcal{P}_{\Sigma}^{1, \lambda}(\beta, \alpha)$ and $f \in \mathcal{N} \mathcal{P}_{\Sigma}^{1, \lambda}(\beta, \alpha)$ if the following conditions are satisfied:

$$
f \in \Sigma, \mathfrak{R}\left(e^{i \beta}\left((1-\lambda) \frac{f(z)}{z}+\lambda f^{\prime}(z)\right)\right)>\alpha \cos \beta \quad(z \in \mathbb{U})
$$

and

$$
\mathfrak{R}\left(e^{i \beta}\left((1-\lambda) \frac{g(w)}{w}+\lambda g^{\prime}(w)\right)\right)>\alpha \cos \beta \quad(w \in \mathbb{U})
$$

where $\beta \in(-\pi / 2, \pi / 2), 0 \leqq \alpha<1, \lambda \geqq 1$ and the function g is given by (4). Further, the class $\mathcal{N} \mathcal{P}_{\Sigma}^{1, \lambda}(0, \alpha):=\mathcal{B}_{\Sigma}(\alpha, \lambda)$ was introduced and discussed by Frasin and Aouf [6]
Remark 1.7. Taking $\mu=\lambda=1$ and $h(z)=\frac{1+(1-2 \alpha) z}{1-z}, 0 \leqq \alpha<1$ in the class $\mathcal{N} \mathscr{P}_{\Sigma}^{\mu, \lambda}(\beta, h)$, we have $\mathcal{N} \mathcal{P}_{\Sigma}^{1,1}(\beta, \alpha)$ and $f \in \mathcal{N} \mathscr{P}_{\Sigma}^{1,1}(\beta, \alpha)$ if the following conditions are satisfied:

$$
f \in \Sigma, \mathfrak{R}\left(e^{i \beta} f^{\prime}(z)\right)>\alpha \cos \beta \quad(z \in \mathbb{U})
$$

and

$$
\mathfrak{R}\left(e^{i \beta} g^{\prime}(w)\right)>\alpha \cos \beta \quad(w \in \mathbb{U})
$$

where $\beta \in(-\pi / 2, \pi / 2), 0 \leqq \alpha<1$ and the function g is given by (4). Also, the class $\mathcal{N} \mathcal{P}_{\Sigma}^{1,1}(0, \alpha):=\mathcal{H}_{\Sigma}^{\alpha}$ was introduced and studied by Srivastava et al. [22].

In order to derive our main result, we have to recall here the following lemmas.
Lemma 1.8. [15] If $p \in \mathcal{P}$, then $\left|p_{i}\right| \leqq 2$ for each i, where \mathcal{P} is the family of all functions p, analytic in \mathbb{U}, for which

$$
\mathfrak{R}\{p(z)\}>0 \quad(z \in \mathbb{U})
$$

where

$$
p(z)=1+p_{1} z+p_{2} z^{2}+\cdots \quad(z \in \mathbb{U})
$$

Lemma 1.9. $[18,28]$ Let the function $\varphi(z)$ given by

$$
\varphi(z)=\sum_{n=1}^{\infty} B_{n} z^{n} \quad(z \in \mathbb{U})
$$

be convex in \mathbb{U}. Suppose also that the function $h(z)$ given by

$$
\psi(z)=\sum_{n=1}^{\infty} \psi_{n} z^{n} \quad(z \in \mathbb{U})
$$

is holomorphic in \mathbb{U}. If

$$
\psi(z)<\varphi(z) \quad(z \in \mathbb{U})
$$

then

$$
\left|\psi_{n}\right| \leqq\left|B_{1}\right| \quad(n \in \mathbb{N}=\{1,2,3, \ldots\}) .
$$

The object of the present paper is to introduce a general new subclass $\mathcal{N} \mathcal{P}_{\Sigma}^{\mu, \lambda}(\beta, h)$ of the function class Σ and obtain estimates of the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in this new class $\mathcal{N} \mathscr{P}_{\Sigma}^{\mu, \lambda}(\beta, h)$.

2. Coefficient Bounds for the Function Class $\mathcal{N} \mathcal{P}_{\Sigma}^{\mu, \lambda}(\beta, h)$

In this section we find the estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in the class $\mathcal{N} \mathscr{P}_{\Sigma}^{\mu, \lambda}(\beta, h)$.
Theorem 2.1. Let $f(z)$ given by (1) be in the class $\mathcal{N} \mathcal{P}_{\Sigma}^{\mu, \lambda}(\beta, h), \lambda \geqq 1$ and $\mu \geqq 0$, then

$$
\begin{equation*}
\left|a_{2}\right| \leqq \sqrt{\frac{2\left|B_{1}\right| \cos \beta}{(1+\mu)(2 \lambda+\mu)}} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leqq \frac{2\left|B_{1}\right| \cos \beta}{(2 \lambda+\mu)(1+\mu)^{\prime}} \tag{6}
\end{equation*}
$$

where $\beta \in(-\pi / 2, \pi / 2)$.
Proof. It follows from (2) and (3) that there exists $p, q \in \mathcal{P}$ such that

$$
\begin{equation*}
e^{i \beta}\left((1-\lambda)\left(\frac{f(z)}{z}\right)^{\mu}+\lambda f^{\prime}(z)\left(\frac{f(z)}{z}\right)^{\mu-1}\right)=p(z) \cos \beta+i \sin \beta \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
e^{i \beta}\left((1-\lambda)\left(\frac{g(w)}{w}\right)^{\mu}+\lambda g^{\prime}(w)\left(\frac{g(w)}{w}\right)^{\mu-1}\right)=p(w) \cos \beta+i \sin \beta, \tag{8}
\end{equation*}
$$

where $p(z)<h(z)$ and $q(w)<h(w)$ have the forms

$$
\begin{equation*}
p(z)=1+p_{1} z+p_{2} z^{2}+\ldots \quad(z \in \mathbb{U}) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
q(w)=1+q_{1} w+q_{2} w^{2}+\ldots \quad(w \in \mathbb{U}) \tag{10}
\end{equation*}
$$

Equating coefficients in (7) and (8), we get

$$
\begin{align*}
& e^{i \beta}(\lambda+\mu) a_{2}=p_{1} \cos \beta \tag{11}\\
& e^{i \beta}\left[\frac{a_{2}^{2}}{2}(\mu-1)+a_{3}\right](2 \lambda+\mu)=p_{2} \cos \beta \tag{12}\\
& -e^{i \beta}(\lambda+\mu) a_{2}=q_{1} \cos \beta \tag{13}
\end{align*}
$$

and

$$
\begin{equation*}
e^{i \beta}\left[(\mu+3) \frac{a_{2}^{2}}{2}-a_{3}\right](2 \lambda+\mu)=q_{2} \cos \beta \tag{14}
\end{equation*}
$$

From (11) and (13), we get

$$
\begin{equation*}
p_{1}=-q_{1} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
2 e^{i 2 \beta}(\lambda+\mu)^{2} a_{2}^{2}=\left(p_{1}^{2}+q_{1}^{2}\right) \cos ^{2} \beta \tag{16}
\end{equation*}
$$

Also, from (12) and (14), we obtain

$$
\begin{equation*}
a_{2}^{2}=\frac{e^{-i \beta}\left(p_{2}+q_{2}\right) \cos \beta}{(1+\mu)(2 \lambda+\mu)} \tag{17}
\end{equation*}
$$

Since $p, q \in h(\mathbb{U})$, applying Lemma 1.9, we immediately have

$$
\begin{equation*}
\left|p_{m}\right|=\left|\frac{p^{(m)}(0)}{m!}\right| \leqq\left|B_{1}\right| \quad(m \in \mathbb{N}) \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|q_{m}\right|=\left|\frac{q^{(m)}(0)}{m!}\right| \leqq\left|B_{1}\right| \quad(m \in \mathbb{N}) \tag{19}
\end{equation*}
$$

Applying (18), (19) and Lemma 1.9 for the coefficients p_{1}, p_{2}, q_{1} and q_{2}, we readily get

$$
\left|a_{2}\right| \leqq \sqrt{\frac{2\left|B_{1}\right| \cos \beta}{(1+\mu)(2 \lambda+\mu)}}
$$

This gives the bound on $\left|a_{2}\right|$ as asserted in (5).
Next, in order to find the bound on $\left|a_{3}\right|$, by subtracting (14) from (12), we get

$$
\begin{equation*}
2\left(a_{3}-a_{2}^{2}\right)(2 \lambda+\mu)=e^{-i \beta}\left(p_{2}-q_{2}\right) \cos \beta \tag{20}
\end{equation*}
$$

It follows from (17) and (20) that

$$
\begin{equation*}
a_{3}=\frac{e^{-i \beta} \cos \beta\left(p_{2}+q_{2}\right)}{(1+\mu)(2 \lambda+\mu)}+\frac{e^{-i \beta}\left(p_{2}-q_{2}\right) \cos \beta}{2(2 \lambda+\mu)} . \tag{21}
\end{equation*}
$$

Applying (18), (19) and Lemma 1.9 once again for the coefficients p_{1}, p_{2}, q_{1} and q_{2}, we readily get

$$
\left|a_{3}\right| \leqq \frac{2\left|B_{1}\right| \cos \beta}{(2 \lambda+\mu)(1+\mu)}
$$

This completes the proof of Theorem 2.1.

3. Corollaries and Consequences

In view of Remark 1.2, if we set

$$
h(z)=\frac{1+A z}{1+B z} \quad(-1 \leqq B<A \leqq 1 ; z \in \mathbb{U})
$$

and

$$
h(z)=\frac{1+(1-2 \alpha) z}{1-z} \quad(0 \leqq \alpha<1 ; z \in \mathbb{U})
$$

in Theorem 2.1, we can readily deduce Corollaries 3.1 and 3.2 , respectively, which we merely state here without proof.

Corollary 3.1. Let $f(z)$ given by (1) be in the class $\mathcal{N} \mathcal{P}_{\Sigma}^{\mu, \lambda}\left(\beta, \frac{1+A z}{1+B z}\right)$, then

$$
\begin{equation*}
\left|a_{2}\right| \leqq \sqrt{\frac{2(A-B) \cos \beta}{(1+\mu)(2 \lambda+\mu)}} \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leqq \frac{2(A-B) \cos \beta}{(2 \lambda+\mu)(1+\mu)} \tag{23}
\end{equation*}
$$

where $\beta \in(-\pi / 2, \pi / 2), \mu \geqq 0$ and $\lambda \geqq 1$.
Corollary 3.2. Let $f(z)$ given by (1) be in the class $\mathcal{N} \mathcal{P}_{\Sigma}^{\mu, \lambda}(\beta, \alpha), 0 \leqq \alpha<1, \mu \geqq 0$ and $\lambda \geqq 1$, then

$$
\begin{equation*}
\left|a_{2}\right| \leqq \sqrt{\frac{4(1-\alpha) \cos \beta}{(1+\mu)(2 \lambda+\mu)}} \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leqq \frac{4(1-\alpha) \cos \beta}{(2 \lambda+\mu)(1+\mu)}, \tag{25}
\end{equation*}
$$

where $\beta \in(-\pi / 2, \pi / 2)$.
Remark 3.3. When $\beta=0$ the estimates of the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ of the Corollary 3.2 are improvement of the estimates obtained in [3, Theorem 3.1].

Corollary 3.4. Let $f(z)$ given by (1) be in the class $\mathcal{N} \mathcal{P}_{\Sigma}^{\mu, 1}(\beta, \alpha), 0 \leqq \alpha<1$ and $\mu \geqq 0$, then

$$
\begin{equation*}
\left|a_{2}\right| \leqq \sqrt{\frac{4(1-\alpha) \cos \beta}{(1+\mu)(2+\mu)}} \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leqq \frac{4(1-\alpha) \cos \beta}{(2+\mu)(1+\mu)} \tag{27}
\end{equation*}
$$

where $\beta \in(-\pi / 2, \pi / 2)$.
Corollary 3.5. Let $f(z)$ given by (1) be in the class $\mathcal{N} \mathscr{P}_{\Sigma}^{0,1}(\beta, \alpha), 0 \leqq \alpha<1$, then

$$
\begin{equation*}
\left|a_{2}\right| \leqq \sqrt{2(1-\alpha) \cos \beta} \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leqq 2(1-\alpha) \cos \beta, \tag{29}
\end{equation*}
$$

where $\beta \in(-\pi / 2, \pi / 2)$.
Remark 3.6. Taking $\beta=0$ in Corollary 3.5, the estimate (28) reduces to $\left|a_{2}\right|$ of [10, Corollary 3.3] and (29) is improvement of $\left|a_{3}\right|$ obtained in [10, Corollary 3.3].

Corollary 3.7. Let $f(z)$ given by (1) be in the class $\mathcal{N} \mathcal{P}_{\Sigma}^{1, \lambda}(\beta, \alpha), 0 \leqq \alpha<1$ and $\lambda \geqq 1$, then

$$
\begin{equation*}
\left|a_{2}\right| \leqq \sqrt{\frac{2(1-\alpha) \cos \beta}{2 \lambda+1}} \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leqq \frac{2(1-\alpha) \cos \beta}{2 \lambda+1} \tag{31}
\end{equation*}
$$

where $\beta \in(-\pi / 2, \pi / 2)$.
Remark 3.8. Taking $\beta=0$ in Corollary 3.7, the inequality (31) improves the estimate of $\left|a_{3}\right|$ in [6, Theorem 3.2].
Corollary 3.9. Let $f(z)$ given by (1) be in the class $\mathcal{N} \mathcal{P}_{\Sigma}^{1,1}(\beta, \alpha), 0 \leqq \alpha<1$, then

$$
\begin{equation*}
\left|a_{2}\right| \leqq \sqrt{\frac{2(1-\alpha) \cos \beta}{3}} \tag{32}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leqq \frac{2(1-\alpha) \cos \beta}{3} \tag{33}
\end{equation*}
$$

where $\beta \in(-\pi / 2, \pi / 2)$.
Remark 3.10. For $\beta=0$ the inequality (33) improves the estimate $\left|a_{3}\right|$ of [22, Theorem 2].

References

[1] R. M. Ali, S. K. Lee, V. Ravichandran, S. Supramanian, Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett. 25 (2012), no. 3, 344-351.
[2] S. Bulut, Coefficient estimates for a class of analytic and bi-univalent functions, Novi Sad J. Math. 43 (2013), no. 2, 59-65.
[3] M. Çağlar, H. Orhan and N. Yağmur, Coefficient bounds for new subclasses of bi-univalent functions, Filomat, 27 (2013), no. 7, 1165-1171.
[4] E. Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Classical Anal. 2 (1) (2013), 49-60.
[5] P. L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer, New York, 1983.
[6] B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24 (2011), no. 9, 1569-1573.
[7] S.P.Goyal and P.Goswami, Estimate for initial Maclaurin coefficients of bi-univalent functions for a class defined by fractional derivatives, J. Egyptian Math. Soc., 20 (2012), 179-182.
[8] T. Hayami and S. Owa, Coefficient bounds for bi-univalent functions, Pan Amer. Math. J. 22 (4) (2012), 15-26.
[9] Y. C. Kim and H. M. Srivastava, Some subordination properties for spirallike functions, Appl. Math. Comput. 203 (2008), no. 2, 838-842.
[10] X.-F. Li and A.-P. Wang, Two new subclasses of bi-univalent functions, Internat. Math. Forum 7 (2012), 1495-1504.
[11] W. C. Ma, D. Minda, A unified treatment of some special classes of univalent functions, in: Proceedings of the Conference on Complex Analysis, Tianjin, 1992, 157-169, Conf. Proc. Lecture Notes Anal. I, Int. Press, Cambridge, MA, 1994.
[12] N. Magesh and J. Yamini, Coefficient bounds for certain subclasses of bi-univalent functions, Internat. Math. Forum 8 (2013), no. 27, 1337-1344.
[13] S. S. Miller and P. T. Mocanu, Differential subordinations, Monographs and Textbooks in Pure and Applied Mathematics, 225, Dekker, New York, 2000.
[14] G. Murugusundaramoorthy, N. Magesh and V. Prameela, Coefficient bounds for certain subclasses of bi-univalent functions, Abs. Appl. Anal., Volume 2013, Article ID 573017, 3 pages.
[15] Ch. Pommerenke, Univalent Functions, Vandenhoeck \& Ruprecht, Göttingen, 1975.
[16] S. Prema, B. S. Keerthi, Coefficient bounds for certain subclasses of analytic functions, J. Math. Anal. 4 (2013), no. 1, 22-27.
[17] V. Ravichandran, Y. Polatoglu, M. Bolcal and A. Sen, Certain subclasses of starlike and convex functions of complex order, Hacettepe J. Math. Stat. 34 (2005), 9-15.
[18] W. Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc. (2) 48 (1943), 48-82.
[19] S. Sivaprasad Kumar, V. Kumar and V. Ravichandran, Estimates for the initial coefficients of bi-univalent functions, arXiv:1203.5480v1, 2012.
[20] H. M. Srivastava, Some inequalities and other results associated with certain subclasses of univalent and bi-univalent analytic functions, in Nonlinear Analysis: Stability, Approximation, and Inequalities (Panos M. Pardalos, Pando G. Georgiev, and Hari M. Srivastava, Editors), Springer Series on Optimization and Its Applications, Vol. 68, Springer-Verlag, Berlin, Heidelberg and New York, 2012, pp. 607-630.
[21] H. M. Srivastava, S. Bulut, M. Çağlar, N. Yağmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat, 27 (2013), no. 5, 831-842.
[22] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), no. 10, 1188-1192.
[23] H. M. Srivastava, G. Murugusundaramoorthy and N. Magesh, On certain subclasses of bi-univalent functions associated with hohlov operator, Global J. Math. Anal. 1 (2) (2013) 67-73.
[24] H. M. Srivastava, S. Owa (Eds.), Current topics in analytic function theory, World Sci. Publishing, River Edge, NJ, 1992.
[25] H. M. Srivastava, Q.-H. Xu and G.-P. Wu, Coefficient estimates for certain subclasses of spiral-like functions of complex order, Appl. Math. Lett. 23 (2010), no. 7, 763-768.
[26] Q.-H. Xu, Q.-M. Cai and H. M. Srivastava, Sharp coefficient estimates for certain subclasses of starlike functions of complex order, Appl. Math. Comput. 225 (2013), 43-49.
[27] Q.-H. Xu, Y.-C. Gui and H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25 (2012), no. 6, 990-994.
[28] Q.-H. Xu, H.M. Srivastava, Z. Li, A certain subclass of analytic and close-to-convex functions, Appl. Math. Lett. 24 (2011) $396-401$.
[29] Q.-H. Xu, H.-G. Xiao and H. M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput. 218 (2012), no. 23, 11461-11465.

[^0]: 2010 Mathematics Subject Classification. 30C45.
 Keywords. (Analytic functions, univalent functions, bi-univalent functions, starlike and convex functions, bi-starlike and bi-convex functions.)

 Received: 29 November 2013; Accepted: 24 December 2013
 Communicated by Hari M. Srivastava
 Corresponding author: H. Orhan
 Email addresses: orhanhalit607@gmail.com; horhan@atauni.edu.tr (H. Orhan), nmagi_2000@yahoo.co.in (N. Magesh), balajilsp@yahoo.co.in (V. K. Balaji)

